Duplication of a gene-rich cluster between 16p11.1 and Xq28: a novel pericentromeric-directed mechanism for paralogous genome evolution.

نویسندگان

  • E E Eichler
  • F Lu
  • Y Shen
  • R Antonacci
  • V Jurecic
  • N A Doggett
  • R K Moyzis
  • A Baldini
  • R A Gibbs
  • D L Nelson
چکیده

We have identified a 26.5 kb gene-rich duplication shared by human Xq28 and 16p11.1. Complete comparative sequence analysis of cosmids from both loci has revealed identical Xq28 and 16p11.1 genomic structures for both the human creatine transporter gene (SLC6A8) and five exons of the CDM gene (DXS1357E). Overall nucleotide similarity within the duplication was found to be 94.6%, suggesting that this interchromosomal duplication occurred within recent evolutionary time (7-10 mya). Based on comparisons between genomic and cDNA sequence, both the Xq28 creatine transporter and DXS1357E genes are transcriptionally active. Predicted translation of exons and RT-PCR analysis reveal that chromosome 16 paralogs likely represent pseudogenes. Comparative fluorescent in situ hybridization (FISH) analyses of chromosomes from various primates indicate that this gene-rich segment has undergone several duplications. In gorilla and chimpanzee, multiple pericentromeric localizations on a variety of chromosomes were found using probes from the duplicated region. In other species, such as the orangutan and gibbon, FISH signals were only identified at the distal end of the X chromosome, suggesting that the Xq28 locus represents the ancestral copy. Sequencing of the 16p 11.1/Xq28 duplication breakpoints has revealed the presence of repetitive immunoglobulin-like CAGGG pentamer sequences at or near the paralogy boundaries. The mobilization and dispersal of this gene-rich 27 kb element to the pericentromeric regions of primate chromosomes defines an unprecedented form of recent genome evolution and a novel mechanism for the generation of genetic diversity among closely related species.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular structure and evolution of an alpha satellite/non-alpha satellite junction at 16p11.

We have determined the detailed molecular structure and evolution of an alpha satellite junction from human chromosome 16p11. The analysis reveals that the alpha satellite sequence bordering the transition lacks higher-order structure and that the non-alpha satellite portion consists of a mosaic of duplicated segments of complex evolutionary origin. The 16p11 junction was formed recently (5-10 ...

متن کامل

Interchromosomal duplications of the adrenoleukodystrophy locus: a phenomenon of pericentromeric plasticity.

A 9.7 kb segment encompassing exons 7-10 of the adrenoleukodystrophy (ALD) locus of the X chromosome has duplicated to specific locations near the pericentromeric regions of human chromosomes 2p11,10p11, 16p11 and 22q11. Comparative sequence analysis reveals 92-96% nucleotide identity, indicating that the autosomal ALD paralogs arose relatively recently during the course of higher primate evolu...

متن کامل

Bioinformatics Genome-Wide Characterization of the WRKY Gene Family in Sorghum bicolor

The WRKY gene family encodes a large group of transcription factors that regulate genes involved in plant response to biotic and abiotic stresses. Sorghum is a notable grain and forage crop in semi-arid regions because of its unusual tolerance against hot and dry environments. We identified a set of 85 WRKY genes in the S. bicolor genome and classified them into three groups (I–III). Among the ...

متن کامل

The low-recombining pericentromeric region of barley restricts gene diversity and evolution but not gene expression

The low-recombining pericentromeric region of the barley genome contains roughly a quarter of the genes of the species, embedded in low-recombining DNA that is rich in repeats and repressive chromatin signatures. We have investigated the effects of pericentromeric region residency upon the expression, diversity and evolution of these genes. We observe no significant difference in average transc...

متن کامل

Gene Family: Structure, Organization and Evolution

  Gene families are considered as groups of homologous genes which they share very similar sequences and they may have identical functions. Members of gene families may be found in tandem repeats or interspersed through the genome. These sequences are copies of the ancestral genes which have underwent changes. The multiple copies of each gene in a family were constructed based on gene duplicati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 5 7  شماره 

صفحات  -

تاریخ انتشار 1996